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Online Appendix

“Pricing and Matching with Forward-looking Buyers and Sellers”

The rest of proofs can be found in a supplemental note that is posted on the authors’ websites.

A. Proof of Lemma 1

The proof of Lemma (B) is facilitated by an auxiliary two-sided dynamic mechanism design prob-

lem.

A.1. An Optimal Two-sided Dynamic Mechanism Design Benchmark

In this subsection, we formally define a two-sided dynamic mechanism design problem. We restrict

ourselves to direct mechanisms. A mechanism specifies a product allocation and money transfer

rule that we encode as follows.

Buyer φ is assigned with

yφ , (τφ, aφ, sφ,mφ, pφ) ,

where τφ ∈ [tφ, T ] is the time that the intermediary decides on whether to accept buyer φ’s demand

request, aφ ∈ {0,1} is an indicator for whether buyer φ’s demand request is accepted, sφ is the

time that buyer φ is discharged from the system, mφ is an indicator for whether buyer φ’s demand

request is honored at time sφ, and pφ is the price that buyer φ pays to the intermediary at time

sφ.

Similarly, seller ψ is assigned with

yψ , (τψ, aψ, sψ,mψ, pψ) ,

where τψ ∈ [tψ, T ] is the time that the intermediary decides on whether to accept seller ψ’s supply

request, aψ ∈ {0,1} is an indicator for whether seller ψ’s supply request is accepted, sψ is the time

that seller ψ is discharged from the system, mψ is an indicator for whether seller ψ’s supply request

is honored at time sψ, and pψ is the price that the intermediary pays to seller ψ at time sψ.

Denote by yt , {yφ, yψ : τφ ≤ t, τψ ≤ t} the set of decisions by the intermediary made up to time

t. Finally, denote the intermediary’s information set by Ht, the filtration generated by the buyers’

and sellers’ arrivals up to time t and assignment decisions prior to time t, i.e., Ht = σ (Ht, yt−) . A

feasible mechanism satisfies the following properties:
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1. (Causality on the demand side) τφ and sφ are stopping times with respect to the filtration Ht.

Moreover, aφ is Hτφ-measurable, and mφ and pφ are Hsφ-measurable.29

2. (Causality on the supply side) τψ and sψ are stopping times with respect to the filtration Ht.

Moreover, aψ is Hτψ -measurable, and mψ and pψ are Hsψ -measurable.30

3. (Demand-supply balancing condition) At each point of time, the number of products buyers

receive equals the number of products sellers deliver, i.e.,

∑
φ∈Ht

1{sφ = t,mφ = 1}=
∑
ψ∈Ht

1{sψ = t,mψ = 1} , ∀ t∈ [0, T ]. (1)

We denote by Y, the class of all feasible mechanisms yT . The intermediary collects profit

Π
(
yT
)
,
∑
φ∈HT

pφ−
∑
ψ∈HT

pψ.

The utility garnered by buyer φ when she reports her true type as φ̂ (either truthfully or manip-

ulatively) is then given by Ud(φ,yφ̂). When buyer φ manipulates her report on her private type,

she can only reveal her arrival no earlier than her true arrival (i.e., tφ̂ ≥ tφ).

Analogously, the utility garnered by seller ψ when she reports her true type as ψ̂ (either truthfully

or manipulatively) is then given by U s(ψ,yψ̂). When seller ψ manipulates her report on her private

type, she can only reveal her arrival no earlier than her true arrival (i.e., tψ̂ ≥ tψ).

The intermediary now faces the following optimization problem that seeks an optimal two-sided

dynamic mechanism:

29 At each time t, when the intermediary determines whether stopping times τφ and sφ are equal to or greater than t,
the information available to her consists of the collection of the types of all buyers and sellers who arrive up to time
t and all decisions that the intermediary makes before time t. At time τφ, when the intermediary determines whether
to accept buyer φ’s demand request, aφ, the information available to the intermediary consists of the collection of the
types of all buyers and sellers who arrive up to time τφ and all decisions that the intermediary makes before time τφ.
At time sφ, when the intermediary determines whether buyer φ’s demand request is honored, mφ, and how much to
charge buyer φ, pφ, the information available to the intermediary consists of the collection of the types of all buyers
and sellers who arrive up to time sφ and all decisions that the intermediary makes before time sφ.

30 The interpretations of filtrations Ht, Hτψ , Hsψ are analogous to those on the demand side.
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max
yT∈Y

E
[
Π
(
yT
)]

s.t. E−φ
[
Ud(φ,yφ)

]
≥ E−φ

[
Ud(φ,yφ̂)

]
, ∀ φ, φ̂, s.t. tφ̂ ∈ [tφ, T ] , (ICd)

E−φ
[
Ud(φ,yφ)

]
≥ 0, ∀ φ, (IRd)

E−ψ [U s(ψ,yψ)]≥ E−ψ
[
U s(ψ,yψ̂)

]
, ∀ ψ, ψ̂, s.t. tψ̂ ∈ [tψ, T ] , (ICs)

E−ψ [U s(ψ,yψ)]≥ 0, ∀ ψ. (IRs)

(B’)

While expectation E−φ[·] is taken with respect to HT\{φ}, expectation E−ψ[·] is taken with respect

to HT\{ψ}. Denote by J∗ the optimal value obtained in problem (B’). We establish the following

result that is essentially due to the revelation principle.

Lemma 3 (Benchmark). For any pricing policy π ∈Π and matching policy M ∈M, we have

Jπ,M ≤ J∗.

Proof of Lemma 3. Consider the class of pricing and matching mechanisms, Ỹ(⊂ Y), each of

which, say yT , corresponds to a given pricing policy π ∈ Π and a given matching policy M ∈M

such that yφ = yπ,Mφ and yψ = yπ,Mψ . Now consider the optimization problem:

max
yT∈Ỹ

E
[
Π
(
yT
)]

s.t. E−φ
[
Ud(φ,yφ)|πdtφ ,N

s
tφ−

]
≥ E−φ

[
Ud(φ,yφ̂)|πdtφ ,N

s
tφ−

]
, ∀ φ, φ̂, s.t. tφ̂ ∈ [tφ, T ] , (IC-d)

E−φ
[
Ud(φ,yφ)|πdtφ ,N

s
tφ−

]
≥ 0, ∀ φ, (IR-d)

E−ψ
[
U s(ψ,yψ)|πstψ

]
≥ E−ψ

[
U s(ψ,yψ̂)|πstψ

]
, ∀ ψ, ψ̂, s.t. tψ̂ ∈ [tψ, T ] , (IC-s)

E−ψ
[
U s(ψ,yψ)|πstψ

]
≥ 0, ∀ ψ. (IR-s)

(2)

Denote by Jπ
∗,M∗ the optimal value for problem (2). For any pricing policy π ∈Π and matching

policy M ∈M, we must have Jπ,M ≤ Jπ∗,M∗ . This is because, given a pricing policy π ∈Π and a

matching policy M ∈M, its corresponding mechanism in Ỹ is feasible. Consider the mechanism

yT where the intermediary commits to “simulating” each buyer’s stopping and purchasing rules

(i.e., (τφ, aφ) =
(
τπ,Mφ , aπ,Mφ

)
for each buyer φ) and each seller’s stopping and selling rules (i.e.,

(τψ, aψ) =
(
τπ,Mψ , aπ,Mψ

)
for each seller ψ). Since by definition

(
τπ,Mφ , aπ,Mφ

)
is buyer φ’s best response

to herself and the pricing policy π and the matching policy M , (IR-d) and (IC-d) are satisfied in

problem (2). Similarly, since by definition
(
τπ,Mψ , aπ,Mψ

)
is seller ψ’s best response to herself and the
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pricing policy π and the matching policy M , (IR-s) and (IC-s) are satisfied in problem (2). As a

result, we verify that Jπ,M ≤ Jπ∗,M∗ for any π and M .

Moreover, problem (B’) is a relaxation of problem (2) in that a) problem (B’) requires the

constraints to be satisfied in expectation, while problem (2) requires the constraints to be satisfied

along every sample path; b) problem (B’) optimizes over a larger set than problem (2), since Ỹ ⊂ Y.

Hence, Jπ
∗,M∗ ≤ J∗. Together with Jπ,M ≤ Jπ∗,M∗ , we have Jπ,M ≤ J∗ for any π and M . �

A.2. Upper Bound on the Mechanism Design Benchmark

Recall that every buyer’s and seller’s type is two dimensional. Therefore, we still face the analytical

difficulty of computing the optimal value of the two-sided dynamic mechanism design problem

(B’). In order to use this benchmark to analyze the performance of any pricing and matching

policy, rather than precisely computing the optimal value of this benchmark, our approach is to

further establish a tractable upper bound by solving a relaxed two-sided dynamic mechanism design

problem wherein every buyer’s and seller’s arrival time is assumed to be known by the intermediary.

Hence, in the relaxed problem, every buyer’s and seller’s type is reduced to be one dimensional, i.e.,

the relaxed problem is subject to the following one-dimensional incentive compatibility constraints:

E−φ
[
Ud(φ,yφ)

]
≥ E−φ

[
Ud(φ,yφv′ )

]
with φv′ , (tφ, v

′) , ∀ φ,v′, (ICd’)

E−ψ [U s(ψ,yψ)]≥ E−ψ
[
U s(ψ,yψc′ )

]
with ψc′ , (tψ, c

′) , ∀ ψ, c′. (ICs’)

By applying the Myersonion approach (Myerson 1981) to this relaxed mechanism design problem

and making further relaxations, we can complete the proof of Lemma 1.

Proof of Lemma 1. Consider the following optimization problem with the optimal value

denoted by J̄1:

max
{yT∈Y}

E

 ∑
φ,ψ∈HT

V d (vφ)−V s (cψ)− b (sφ− tφ)−h (sψ − tψ)


s.t.

∑
φ∈Ht

1{sφ = t,mφ = 1}=
∑
ψ∈Ht

1{sψ = t,mψ = 1} , ∀ t∈ [0, T ].

(B”)

Combining Lemmas S.2 and S.4, we immediately have J∗ ≤ J̄1.

Now, we consider an optimization problem that has the same definition as (B”) except that we

assume that the intermediary is clairvoyant that she knows buyers’ and sellers’ arrival processes
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HT at time 0, i.e., the intermediary’s every feasible mechanism yT is adapted to σ(HT ). We denote

by J̄2 the optimal value of this new optimization problem. Hence, we have J̄1 ≤ J̄2.

Note that if buyer φ and seller ψ are matched, then we have sφ, sψ ≥max{tφ, tψ}. Therefore, we

have J̄2 ≤ E
[
J̄(HT )

]
.

Therefore, all analyses above jointly imply

J∗ ≤ J̄1 ≤ J̄2 ≤ E
[
J̄(HT )

]
.

Therefore, this result and Lemma 3 jointly complete the proof of this lemma. �

B. The Effects of Market Conditions on Pricing Heuristic

First, we explore the effects of the variation of the buyer valuation distribution and the seller cost

distribution on prices p∗ and w∗, as well as the intermediary’s matching quantity µ∗ and her profit

J̄∗.

Theorem 4 (Comparative Statics on Valuation/Cost Distribution). Consider a

market wherein λdT = λsT = 1, buyers’ valuations are uniformly distributed on [V − θd, V + θd]

with θd ≥ 0 and sellers’ costs are uniformly distributed on [C − θs,C + θs] with θs ≥ 0 and C < V .

Then,

(i) p∗ is decreasing in θd ∈
[
0,max

{(
V−C

3
− θs

)+
,
(√

(V −C)θs− θs
)+
}]

and increasing in θd ≥

max

{(
V−C

3
− θs

)+
,
(√

(V −C)θs− θs
)+
}

. In addition, p∗ is increasing in θs.

(ii) w∗ is increasing in θs ∈
[
0,max

{(
V−C

3
− θd

)+
,
(√

(V −C)θd− θd
)+
}]

and decreasing in

θs ≥max

{(
V−C

3
− θd

)+
,
(√

(V −C)θd− θd
)+
}

. In addition, w∗ is decreasing in θd.

(iii) µ∗ is decreasing in θd + θs.

(iv) J̄∗ is decreasing in θd + θs ∈ [0, V −C] and increasing in θd + θs ≥ V −C.

Parameters θd and θs measure the degree of variations of buyers’ valuations and sellers’ costs,

respectively. Theorem 4(i) has the following interpretations. First, consider the scenario that buy-

ers’ valuations are concentrated (θd is small). Suppose buyers’ valuations become slightly more

dispersed (θd increases). Because buyers’ valuations are still highly concentrated, if the interme-

diary charges buyers more, then she fails to capture a large number of buyers and thus she loses

substantial revenue from buyers. However, if the intermediary slightly lowers the price for buyers,

then she can capture a vast number of buyers without losing too much revenue from each matched

buyer. Therefore, the intermediary tends to charge buyers less. Second, consider the scenario that
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buyers’ valuations are dispersed (θd is large). Suppose buyers’ valuations become even more dis-

persed (θd increases). If the intermediary charges buyers less, then she both loses revenue from

each matched buyer and fails to attract substantially more buyers to purchase because of highly

dispersed buyers’ valuations. However, if the intermediary slightly raises the price for buyers, then

she can collect more revenue from each matched buyer without loosing too many buyers who decide

not to buy. Therefore, the intermediary tends to charge buyers more. Third, consider the scenario

that sellers’ costs become more dispersed (θs increases). Suppose the intermediary charges buyers

less. Then more buyers consider to purchase the product. To achieve the market clearance, the

intermediary has to incentivize more sellers to sell the product. Because sellers’ costs are more

dispersed, the intermediary has to substantially increase the compensation for sellers. As a result,

the net profit from matching one buyer and one seller is too low or even negative. Therefore, the

intermediary charges buyers more when sellers’ costs are more dispersed.

We can make analogous interpretations for Theorem 4(ii) about the effects of buyer valuation

variation and seller cost variation on the wage that the intermediary compensates sellers.

In Theorem 4(iii), if the sellers’ costs become more dispersed, then following from Theorem 4(i),

the intermediary raises the price for buyers. As a result, the number of buyers who are matched

reduces. An analogous interpretation can be made if buyers’ valuations become more dispersed.

Theorem 4(iv) has the following interpretations. First, consider the scenario that buyers’ val-

uations are well concentrated. Suppose buyers’ valuations become slightly more dispersed (θd

increases). Because buyers’ valuations are still well concentrated, slightly reducing the price for buy-

ers can maintain almost the same number of matches. However, the intermediary is less profitable

from each match by doing so. Therefore, the intermediary’s total profit decreases. Second, con-

sider the scenario that buyers’ valuations are highly dispersed. Suppose buyers’ valuations become

even more dispersed (θd increases). Although the total number of matches decreases, it allows the

intermediary to set a sufficiently high price to attract only high-value buyers to purchase and set

a sufficiently low compensation to attract only low-cost sellers to sell. Therefore, the benefit from

a higher net profit from each match outperforms the reduced number of matches. Therefore, the

intermediary’s total profit increases. The analogous arguments can be made on the effect of the

seller cost variation.

Second, we explore the effects of the buyer valuation distribution (characterized by F d(·)) and the

seller cost distribution (characterized by F s(·)) on prices p∗ and w∗, as well as the intermediary’s

matching quantity µ∗ and her profit J̄∗.

Theorem 5 (Comparative Statics on Valuation/Cost Distribution).
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(i) Consider a family of buyer valuation distribution functions F d
θ (·) parameterized by θ > 0, where

F d
θ1

(θ1v) = F d
θ2

(θ2v) for all v ∈ [0, v̄] and θ1, θ2 > 0. Assume the generalized failure rate
vfdθ (v)

F̄d
θ

(v)

is increasing in v. Then, p∗ and w∗ are increasing in θ. Moreover, µ∗ and J̄∗ are increasing

in θ.

(ii) Consider a family of seller cost distribution functions F s
θ (·) parameterized by θ > 0, where

F s
θ1

(θ1c) = F s
θ2

(θ2c) for all c ∈ [0, c̄] and θ1, θ2 > 0. Assume
cfsθ (c)

F s
θ

(c)
is decreasing in c. Then, p∗

and w∗ are increasing in θ. Moreover, µ∗ and J̄∗ are decreasing in θ.

In Theorem 5(i), the condition that
vfdθ (v)

F̄d
θ

(v)
is increasing is the commonly used Increasing Gener-

alized Failure Rate (IGFR) condition. The condition F d
θ1

(θ1v) = F d
θ2

(θ2v) for all v ∈ [0, v̄] is satisfied

by many commonly used distributions, e.g., the family of uniform distributions, Uniform[0, θ],

and Weibull and Gamma distributions, Weibull,Gamma(α,θ). This condition F d
θ1

(θ1v) = F d
θ2

(θ2v)

implies that as θ increases, a buyer is more likely to have a higher product valuation. Therefore,

when θ increases, on the demand side, the intermediary can raise up the price for buyers, p∗, to

a certain level, such that she can both collect a higher revenue from each buyer and attract more

buyers to request the product (µ∗ increases). Meanwhile, in order to match the increasing num-

ber of demand requests, on the supply side, the intermediary increases payments to sellers (w∗

increases) to encourage more sellers to deliver the product. As θ increases, since buyer product

valuations are more likely to be high and the intermediary matches more pairs of buyers and sellers

(µ∗ increases), the intermediary makes a higher profit (J̄∗ increases).

In Theorem 5(ii), the condition that
cfsθ (c)

F s
θ

(c)
is non-increasing in c is an analogous condition on the

supply side to the IGFR condition assumed for the demand side. The condition F s
θ1

(θ1c) = F s
θ2

(θ2c)

implies that as θ decreases, a seller is more likely to incur a lower product production and delivery

cost. Therefore, when θ decreases, on the supply side, the intermediary cuts down the price for

sellers, w∗, to a certain level, such that she can both pay less to each seller and attract more

sellers to deliver the product (µ∗ increases). Meanwhile, in order to match the increasing number of

supply requests, on the demand side, the intermediary reduces the price for buyers (p∗ decreases) to

encourage more buyers to request the product. As θ decreases, since seller production and delivery

costs are more likely to be low and the intermediary matches more pairs of buyers and sellers (µ∗

increases), the intermediary makes a higher profit (J̄∗ increases).

In summary, in a thick market with large volumes of demand and supply (for which the fluid

approximation tends to apply), while both a stochastically larger willingness-to-pay distribution

and a smaller willingness-to-sell distribution tend to result in a higher total matching quantity

and a higher total profit level for the intermediary, their implications on prices can go either way

depending on whether the change is more favorable to the buy or the sell side.


